Higher-order variational set of the benson proper perturbation map in set-valued optimization
نویسندگان
چکیده
منابع مشابه
Proper Efficiency for Set-valued Optimization Problems and Vector Variational-like Inequalities
The purpose of this paper is to establish some relationships between proper efficiency of set-valued optimization problems and proper efficiency of vector variational-like inequalities under the assumptions of generalized cone-preinvexity. Our results extend and improve the corresponding results in the literature.
متن کاملOptimality conditions for Pareto efficiency and proper ideal point in set-valued nonsmooth vector optimization using contingent cone
In this paper, we first present a new important property for Bouligand tangent cone (contingent cone) of a star-shaped set. We then establish optimality conditions for Pareto minima and proper ideal efficiencies in nonsmooth vector optimization problems by means of Bouligand tangent cone of image set, where the objective is generalized cone convex set-valued map, in general real normed spaces.
متن کاملFirst-order optimality conditions in set-valued optimization
A a set-valued optimization problem minC F (x), x ∈ X0, is considered, where X0 ⊂ X , X and Y are Banach spaces, F : X0 Y is a set-valued function and C ⊂ Y is a closed cone. The solutions of the set-valued problem are defined as pairs (x, y), y ∈ F (x), and are called minimizers. In particular the notions ofw-minimizer (weakly efficient points), p-minimizer (properly efficient points) and i-mi...
متن کاملHigher-order optimality conditions for weakly efficient solutions in nonconvex set-valued optimization
Unfortunately, the incorrect version of [1, Theorem 4.3] was published. The correct version of [1, Theorem 4.3] is given in this paper. By employing the generalized higher-order contingent derivatives of set-valued maps, Wang et al. [1] established a sufficient optimality condition of weakly efficient solutions for (SV P): (SV P) min F(x), s.t. G(x) (−D) = ∅, x ∈ E. Theorem 1 (see [1, Theorem 4...
متن کاملHigher-Order Weakly Generalized Adjacent Epiderivatives and Applications to Duality of Set-Valued Optimization
A new notion of higher-order weakly generalized adjacent epiderivative for a set-valued map is introduced. By virtue of the epiderivative and weak minimality, a higher-order Mond-Weir type dual problem and a higher-order Wolfe type dual problem are introduced for a constrained setvalued optimization problem, respectively. Then, corresponding weak duality, strong duality and converse duality the...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Science and Technology Development Journal - Natural Sciences
سال: 2020
ISSN: 2588-106X,2588-106X
DOI: 10.32508/stdjns.v3i4.696